
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2000; 00:1–6 Prepared using fldauth.cls [Version: 2002/09/18 v1.01]

Algorithms for Interface Treatment and Load Computation in
Embedded Boundary Methods for Fluid and Fluid-Structure

Interaction Problems

K. Wang3, A. Rallu2, J-F. Gerbeau∗4 and C. Farhat∗1,2,3

1 Department of Aeronautics and Astronautics
2 Department of Mechanical Engineering

3 Institute for Computational & Mathematical Engineering
Stanford University, Stanford, CA 94305, U.S.A

4 INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France

SUMMARY

Embedded boundary methods for CFD (Computational Fluid Dynamics) simplify a number of issues. These
range from meshing the fluid domain, to designing and implementing Eulerian-based algorithms for fluid-
structure applications featuring large structural motions and/or deformations. Unfortunately, embedded boundary
methods also complicate other issues such as the treatment of the wall boundary conditions in general, and fluid-
structure transmission conditions in particular. This paper focuses on this aspect of the problem in the context
of compressible flows, the finite volume method for the fluid, and the finite element method for the structure.
First, it presents a numerical method for treating simultaneously the fluid pressure and velocity conditions on
static and dynamic embedded interfaces. This method is based on the exact solution of local, one-dimensional,
fluid-structure Riemann problems. Next, it describes two consistent and conservative approaches for computing
the flow-induced loads on rigid and flexible embedded structures. The first approach reconstructs the interfaces
within the CFD solver. The second one represents them as zero level sets, and works instead with surrogate
fluid/structure interfaces. For example, the surrogate interfaces obtained simply by joining contiguous segments
of the boundary surfaces of the fluid control volumes that are the closest to the zero level sets are explored in this
work. All numerical algorithms presented in this paper are applicable with any embedding CFD mesh, whether it is
structured or unstructured. Their performance is illustrated by their application to the solution of three-dimensional
fluid-structure interaction problems associated with the fields of aeronautics and underwater implosion. Copyright
c© 2000 John Wiley & Sons, Ltd.

KEY WORDS: ALE; Eulerian; finite volume method; fluid-structure interaction; immersed boundary method;
level sets

∗This co-author contributed to this work while visiting the Department of Mechanical Engineering at Stanford University
∗Correspondence to: Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, U.S.A.

Contract/grant sponsor: Office of Naval Research; contract/grant number: N00014-06-1-0505, N00014-09-C-015

Contract/grant sponsor: Army Research Laboratory; contract/grant number: W911NF-07-2-0027

Received August 3, 2011
Copyright c© 2000 John Wiley & Sons, Ltd. Revised August 3, 2011

2 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

1. INTRODUCTION

Methods for computing flows on non body-fitted CFD (Computational Fluid Dynamics) grids in
which wet surfaces of various obstacles (the interfaces) are embedded are gaining popularity in
many scientific and engineering applications under different names. These include, among others, the
immersed boundary [1], embedded boundary [2], fictitious domain [3], and Cartesian [4] methods. All
of these and related methods are collectively referred to in this paper as embedded boundary methods.
They can be attractive because they simplify a number of issues ranging from meshing the fluid domain,
to formulating and implementing Eulerian-based algorithms for difficult fluid-structure applications
such as those involving very large structural motions and deformations [5], or topological changes [6],
and for which alternative Arbitrary Lagrangian-Eulerian (ALE) algorithms [7, 8, 9] are unfeasible.
However, because they typically operate on non body-fitted grids, embedded boundary methods also
tend to complicate other issues such as the treatment of wall boundary conditions in general, and fluid-
structure transmission conditions in particular. Indeed, recent developments in embedded boundary
methods have focused mostly on these two issues, albeit primarily on the treatment of the velocity wall
boundary condition for incompressible viscous flows past rigid and motionless obstacles (for example,
see the review paper [10]). In this context, recently proposed algorithms for interface treatment have
focused either on some form of interpolation [11] with particular attention to numerical stability [12]
or higher-order accuracy [11, 13, 14], or on the concept of a ghost cell [15, 16], some variant of the
penalty method [17], and the mirroring technique [18].

For fluid-structure applications, two transmission conditions must be dealt with at the intersection of
the embedded structural surface and embedding fluid mesh. The first one is the slip or no-slip condition,
depending on whether the flow is inviscid or viscous. The semi-discretization or discretization of
this condition is similar to that of its counterpart for flows past rigid and motionless obstacles. For
this reason, virtually all methods mentioned above for the treatment of wall boundary conditions
in embedded boundary methods can be applied for this purpose. The second transmission condition
expresses equilibrium at a fluid-structure interface between the fluid and structural surface tractions.
In practice, it leads to the computation of the generalized and/or total flow-induced load on the wet
surface of the structure. For embedded boundary methods, this computation shares with standard lift
and drag computations the same difficulty of integrating the pressure and viscous tractions of the flow
on a surface that is not explicitly represented in the computational fluid model. Typically, this issue has
been addressed in the literature separately from that associated with the semi-discretization of the first
transmission condition, albeit using in many cases similar techniques based on interpolation and/or
extrapolation, with or without resorting to the explicit computation of the intersection of the embedded
interfaces and embedding mesh [19, 17].

Focusing on compressible flows, this paper contributes a new approach for the treatment of fluid-wall
interfaces for both purely fluid and fluid-structure applications. The proposed approach is a departure
from the methods outlined above and related published works in that it treats the velocity and pressure
boundary conditions on the embedded interfaces simultaneously, rather than disjointly. Furthermore,
instead of relying for this purpose exclusively on interpolation or extrapolation, the proposed method
enforces the appropriate value of the fluid velocity at a wall and recovers the value of the fluid
pressure at this wall via the exact solution of local, one-dimensional, fluid-structure Riemann problems.
This paper also presents two consistent and conservative methodologies for evaluating flow-induced
forces and moments on rigid and flexible embedded interfaces. One of them is based on the local

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 3

reconstruction of the embedded discrete interfaces. The other one is based on the level set concept. It
is particularly attractive because it rigorously allows the substitution of an embedded discrete interface
by a simpler surrogate, which simplifies computations. All of these proposed algorithms are applicable
independently from the type and topology of the embedding CFD grid. They are described here in the
context of inviscid flows and the finite volume (FV) method. However, the underlying ideas are equally
applicable to viscous flows and the finite element (FE) method.

The remainder of this paper is organized as follows. Section 2 specifies the context and governing
equations of the problem summarized above, and formulates the objectives of this paper. Section 3
presents a method based on the exact solution of local, one-dimensional, fluid-structure Riemann
problems for treating simultaneously the velocity and pressure wall boundary conditions in fluid
and fluid-structure interaction problems. Section 4 presents a numerical scheme for computing the
generalized and total flow-induced forces and moments acting on embedded fluid-structure interfaces
that relies on a local and geometrically accurate reconstruction of these interfaces within the CFD
solver. Alternatively, Section 5 proposes a computational framework based on the level set concept that
allows in principle the rigorous evaluation of these forces and moments on surrogates of the embedded
interfaces, in view of simplifying software development and minimizing computational overhead.
It also proposes a specific surrogate for a given fluid/structure discrete interface that trades higher
geometrical fidelity for computational simplicity. Both algorithms presented in Section 4 and Section 5
are consistent in the sense that they preserve some important property of the exact computation of
a flow-induced load, and conservative in the sense that the sum of the virtual works of the fluid
and structural interface forces vanishes. In Section 6, the performance of all algorithms proposed in
this paper is first assessed in details for an academic problem, then highlighted for three-dimensional
fluid-structure interaction problems associated with the fields of aeronautics and underwater implosion.
Finally, conclusions are offered in Section 7.

2. PROBLEM CONTEXT AND FORMULATION

2.1. Governing equations

In this work, the compressible flow in a domain of interest ΩF ⊂ R3 with a wall boundary surface
Σw is assumed to be inviscid and governed by the Euler equations. These can be written in vector and
conservation form as

∂W
∂ t

+~∇ · ~F (W) = 0, in ΩF (1)

where

W = (ρ, ρvx, ρvy, ρvz, E)T , ~∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂ z

)T

, ~F (W) = (Fx(W), Fy(W), Fz(W))T ,

(2)

Fx =

ρvx

p+ρv2
x

ρvxvy
ρvxvz

vx(E + p)

 , Fy =

ρvy

ρvxvy
p+ρv2

y
ρvyvz

vy(E + p)

 , Fz =

ρvz

ρvxvz
ρvyvz

p+ρv2
z

vz(E + p)

 , (3)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

4 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

ρ denotes the fluid density, E is its total energy per unit volume and is given by E =

ρe+
1
2

ρ(v2
x + v2

y + v2
z), where e denotes the internal energy per unit mass, p denotes the fluid pressure,

and~v = (vx, vy, vz) is its velocity vector. For simplicity, but without any loss of generality, the equation
of state (EOS) of the fluid is assumed to be that of the ideal gas — that is, p = (γ − 1)ρe, where γ is
the adiabatic index.

If the wall boundary surface is fixed in time, it is denoted by Σ◦w. In this case, the slip boundary condition
satisfied by the fluid velocity vector can be written as

~v ·~n◦w = 0 on Σ
◦
w, (4)

where~n◦w denotes the unit normal to Σ◦w.

On the other hand, if the wall boundary surface or a subset of it is associated with the wet surface of a
moving rigid body or a flexible dynamic structure ΩS, Σw is decomposed as follows

Σw = Σ
◦
w

⋃
Σ

t
w, (5)

where Σ◦w and Σ t
w denote the fixed and time-dependent components of Σw, respectively. In this case, the

equations of dynamic equilibrium of the moving body and/or flexible dynamic structure are written in
compact form as

ρS
∂ 2u j

∂ t2 =
∂

∂xi

(
σi j +σim

∂u j

∂xm

)
+b j in ΩS, j = 1, 2, 3, (6)

where the subscripts i, j, and m varying between 1 and 3 designate the coordinate system (x,y,z), ~u
is the displacement vector field of the moving body or flexible structure, σ denotes the second Piola-
Kirchhoff stress tensor, and~b denotes the vector of body forces acting in ΩS. Given a structural material
and its constitutive law, the resulting fluid-structure interaction problem is governed by Eq. (1), Eq. (6),
and the two transmission conditions(

~v− ∂~u
∂ t

)
·~n t

w = 0 on Σ
t
w ⊂ Σw, (7)

and(
σi j +σim

∂u j

∂xm
+ pδi j

)
n t

wi
−T j = 0 on Σ

t
w ⊂ Σw, j = 1, 2, 3, (8)

where δi j denotes the Kronecker delta, ~n t
w =~n t

w(t) is the outward unit normal to Σ t
w = Σ t

w(t), and T j
denotes the tractions due to external forces whose origin is not due to the flow.

If ΩS = ΩS(t) is a moving rigid body, σ is set to zero in Eq. (6) and Eq. (8).

2.2. Semi-discretization

The governing fluid equations (1) are semi-discretized here by a classical FV method. The basic steps
of this method are outlined below, in order to introduce a notation and some concepts that are beneficial
to Section 3.

Let Dh denote a standard discretization of the flow domain of interest ΩF , where h designates the
maximal length of the edges of this discretization. For every vertex Vi ∈ Dh, i = 1, · · · ,NV , a cell or

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 5

control volume Ci is constructed. For example, if Dh consists of hexahedra, Ci is defined as the union
of the sub-hexahedra resulting from the subdivision by means of the median planes of each hexahedron
of Dh having Vi as a vertex (see Figure 1). The boundary surface of Ci is denoted by ∂Ci, and the unit
outward normal to ∂Ci is denoted by~ni = (nix ,niy ,niz). The union of all of the control volumes defines
a dual discretization of Dh verifying

NV⋃
i=1

Ci = Dh. (9)

Using the standard characteristic function associated with a control volume Ci, a standard variational
approach, and integration by parts, Eq. (1) can be transformed into its weaker form∫

Ci

∂Wh

∂ t
dΩ + ∑

j∈K(i)

∫
∂Ci j

~F (Wh) ·~ni j dΣ < 1 >

+
∫

∂Ci∩ΣE

~F (Wh) ·~nE dΣ < 2 >

+
∫

∂Ci∩Σ∞

~F (Wh) ·~ni dΣ < 3 >

= 0,

(10)

where Wh denotes the approximation of the fluid state vector W in a semi-discrete space, K(i) denotes
the set of neighboring vertices of Vi, ∂Ci j denotes a segment of ∂Ci that is defined below, ~ni j is the
unit outward normal to ∂Ci j, ΣE is the discrete approximation of Σw,~nE is the unit outward normal to
ΣE , and Σ∞ denotes the far-field boundary of the flow (if it exists). This weaker form reveals that in
practice, the computations are performed in a one-dimensional manner, essentially by evaluating fluxes
along normal directions to boundaries of the control volumes. For this purpose, ∂Ci is split in control
volume boundary facets ∂Ci j connecting the centroids of the hexahedra having Vi and Vj as common
vertices (Figure 1), and term < 1 > in (10) is approximated as follows

∑
j∈K(i)

∫
∂Ci j

~F (Wh) ·~ni j dΣ = ∑
j∈K(i)

ΦFi j(Wi,Wj,EOS,~ni j). (11)

Here, ΦFi j is a numerical flux function associated, for example, with a first-order upwind scheme such
as Roe’s approximate Riemann solver [20] — or more typically, with a second-order extension based on
the MUSCL (Monotonic Upwind Scheme Conservation Law) [22] — and Wi and Wj denote the values
of Wh at the vertices Vi and Vj, respectively. Term < 3 > in (10) is usually approximated by a far-field
boundary technique such as the non-reflective version of the flux-splitting of Steger and Warming [21].
Finally, the computation of term < 2> in (10) involves the first transmission condition (7) and therefore
constitutes one of the two main objectives of this paper.

On the other hand, the structural equations of dynamic equilibrium (6) are semi-discretized by the FE
method. This leads to

Mü+ f int(u, u̇) = fF(w)+ fext , (12)

where M denotes the FE mass matrix and is symmetric positive definite, u denotes the vector of
structural displacements, f int , fext , and fF denote the vectors of internal, external, and flow-induced
forces, respectively, and a dot designates a time derivative.
Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

6 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

Ci

Vj

Cij @

Ci @
Vi

nij

Figure 1. Definition of a control volume Ci, its boundary surface ∂Ci, and a facet ∂Ci j of ∂Ci (view of half entities
for an hexahedral discretization).

2.3. Context and objectives

The first objective of this paper is to propose a numerical method for discretizing the first transmission
condition (7) — and as a particular case the slip boundary condition (4) — in the context of embedded
boundary methods and static and dynamic rigid or flexible embedded interfaces. The second objective
is to present, in the same context, two alternative approaches for discretizing the second transmission
condition (8) and computing the generalized and total flow-induced forces and moments on both rigid
bodies and flexible structures. Before characterizing this specific context, conventional methods for
(semi)-discretizing the transmission conditions (7) and (8) on body-fitted fluid meshes are first outlined.

For a body-fitted CFD grid, Dh includes the surface discretizations of the wall boundaries Σ◦w
and Σ t

w, and therefore the surface discretization ΣE of the entire wall boundary surface Σw. These
geometrical discretizations are denoted here by Σ◦F , Σ t

F , and ΣF = ΣE , respectively (see Figure 2). The
corresponding unit outward normals are denoted by ~n◦F , ~n t

F , and ~nF , respectively. The counterparts of
Σ t

F and ~n t
F in the geometrical discretization of the structural domain ΩS are denoted by ΣS and ~nS,

respectively. In this case, using the definitions given in (3), term < 2 > in (10) can be evaluated as
follows

∫
∂Ci∩ΣE

~F (Wh) ·~nE dΣ =
∫

∂Ci∩ΣF

ρh~vh ·~nF

phnFx +ρhvhx~vh ·~nF
phnFy +ρhvhy~vh ·~nF
phnFz +ρhvhz~vh ·~nF
(Eh + ph)~vh ·~nF

dΣ. (13)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 7

Dh

SE = SF

WS

nF

Vj

Vi

Ci
Cj

Figure 2. Spatial discretization of a two-dimensional fluid computational domain using a body-fitted CFD grid
with triangular elements.

.

Substituting Eq. (7) and Eq. (5) into Eq. (13) above leads to

∫
∂Ci∩ΣE

~F (Wh) ·~nE dΣ =
∫

∂Ci∩Σ◦F

0

phn◦Fx
phn◦Fy

phn◦Fz
0

dΣ+
∫

∂Ci∩Σ t
F

ρh
∂~uh

∂ t
·~n t

F

phn t
Fx +ρhvhx

∂~uh

∂ t
·~n t

F

phn t
Fy +ρhvhy

∂~uh

∂ t
·~n t

F

phn t
Fz +ρhvhz

∂~uh

∂ t
·~n t

F

(Eh + ph)
∂~uh

∂ t
·~n t

F

dΣ. (14)

Eq. (14) above outlines a simple and popular method for enforcing wall boundary conditions on body-

fitted fluid grids. In the presence of a moving wall boundary surface Σ t
w, the velocity

∂~uh

∂ t
is determined

from the dynamics of the wall, whether it is rigid or flexible.

The discretization of the second transmission condition (8) on body-fitted CFD grids often amounts to
computing a generalized flow-induced load of the form

fF
i = ∑

j
ci j

∫
Σ t

Fj

(−ph)~n t
F D j dΣ or fF

i = ∑
j

ci j

∫
ΣS j

ph~nSD j dΣ, (15)

where a bold font instead of an arrow is used to designate the discrete aspect of a vector quantity
consistently with the notation of Eq. (12), fF

i is the value at node Vi of the FE structural model of
interest of the vector of flow-induced forces fF (12), the ci j are some scalar coefficients, and the D j are
some shape functions with support on subsets Σ t

Fj
of Σ t

F or subsets ΣS j of ΣS.

Whether the wall boundary surface or a subset of it is associated with the wet surface of a dynamic
structure or not, as long as the CFD grid remains body-fitted during a numerical simulation, there

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

8 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

is only one issue worth mentioning about the numerical evaluation of the second term in the right
hand-side of Eq. (14), and that of the generalized load vector (15) and/or corresponding resultant over
the entire wall boundary surface. This issue consists of the treatment of the frequent case where the
surface discretizations Σ t

F and ΣS are non-matching, and has been amply discussed in the literature (for
example, see [23, 24, 25]).

For a non body-fitted CFD grid however (for example, see Figure 3), Dh does not contain at any
time (in principle) the surface discretization ΣE — that is, neither the discretization Σ◦F of Σ◦w nor the
discretization Σ t

F of Σ t
w. Therefore, different approaches are required in this case for evaluating the

numerical flux (14) and generalized load vector (15).

Unlike previously published alternatives, the method proposed in this paper for computing the
numerical flux (14) in an embedded boundary method treats the velocity and pressure boundary
conditions on the embedded interfaces Σ◦w and Σ t

w simultaneously, rather than disjointly. Furthermore,
this method is not based exclusively on interpolation or extrapolation, and is independent of the type
and topology of the discretization Dh of the fluid domain. However, it is applicable to compressible
flow problems only.

Two consistent and conservative approaches are also proposed in this paper for computing in an
embedded boundary method the generalized load vector (15). One of them is based on the local
reconstruction of embedded discrete interfaces. The other one is based on the level set concept. It
rigorously allows the substitution of any embedded discrete interface by a surrogate one that simplifies
computations. Both approaches are independent from the proposed method for enforcing the velocity
condition (7) on an embedded discrete interface and recovering there the value of the fluid pressure.
However, they are discussed in details in this paper in conjunction with this method only. Furthermore,
both of these load computation approaches are fully described in the context of inviscid flows and
the FV method. Nevertheless, the underlying ideas are equally applicable to viscous flows and the FE
method.

Gw

WS

t

WF

nw t

Figure 3. Non body-fitted fluid grid and embedded mockup submarine.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 9

3. EXACT FLUID-STRUCTURE RIEMANN SOLVER FOR THE TREATMENT OF THE
FLUID-WALL PRESSURE AND VELOCITY

In [26], a FV method based on the exact solution of local, one-dimensional, two-phase Riemann
problems was proposed for the solution of compressible multi-fluid problems. Here, this method is
adapted for the solution of fluid-structure interaction problems. More specifically, it is tailored to the
enforcement of the velocity transmission condition (7) at a wall boundary surface and the recovery of
the value of the fluid pressure at this boundary surface.

3.1. Algorithm for treating a fluid-structure interface

Let the superscripts L and R designate the grid points on the left and right sides of a small region of a
discrete interface ΣE embedded in a given Eulerian CFD grid Dh. If ViL denotes a first-layer grid point
on the left side of ΣE , then ViR denotes a vertex on its right side that is connected to ViR by an edge
ViLViR traversing ΣE (see Figure 4). Let also MiLiR denote the point where ViLViR intersects the control
volume boundary facet

∂CiLiR =CiL ∩CiR . (16)

Consider first the case where the flow occurs only on one side of the region of interest of ΣE — for
example, the left side. Then, the following four-step algorithm is proposed for treating a fluid-structure
interface in an embedded boundary method.

ALGORITHM 1

For each control volume CiL and for each edge ViLViR intersecting the embedded discrete interface ΣE :

1. If the considered region of ΣE corresponds to a dynamic embedded interface, compute the
velocity of ΣE at the point MiLiR , u̇M = u̇(MiLiR), by interpolation, extrapolation, or a combination
of interpolation and extrapolation of the discrete velocity field u̇ obtained from the solution of
the discrete structural equations of dynamic equilibrium (12). If on the other hand the considered
region of ΣE corresponds to a static embedded interface, set u̇M ·~nEM = 0, where~nEM =~nE(MiLiR)
is the unit outward normal to ΣE at the point MiLiR .

2. Assume that at the point MiLiR , the control volume boundary facet ∂CiLiR (16) and the embedded
discrete interface ΣE coincide (ASSUMPTION 1). Construct and solve analytically at MiL jR the
following “one-sided”, one-dimensional Riemann problem

∂W̃
∂ t

+
∂ ~F

∂ s
(W̃) = 0

W̃ (s,0) = W̃iL , if s≥ 0
v(v0t, t) = v0, ∀ 0≤ t ≤ ∆t

(17)

where
W̃ = W̃ (s, t) = (ρ, ρv, E)T . (18)

Here, W̃ is the conservative state vector of the one-dimensional flow along the opposite direction
to~niLiR , s is the abscissa along this direction and has its origin at the point MiLiR (see Figure 4),

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

10 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

and the flux function ~F is defined by

~F (W̃) =
(
ρv, ρv2 + p, (E + p)v

)T
. (19)

The initial condition W̃iL is obtained from WiL as follows

W̃iL =

 ρiL

v⊥iL
v⊥iL(E

⊥
iL + piL)

 , (20)

where v⊥iL =~viL ·~niLiR is the normal component of the fluid velocity at ViL and E⊥iL = ρiL eiL +
1
2 (v
⊥
iL)

2. Finally,
v0 = u̇M ·~nEM (21)

is the normal component of the structural velocity at the point MiLiR and is assumed to be constant
for 0 ≤ t ≤ ∆t, where ∆t denotes the computational time-step. Therefore, as far as this one-
dimensional problem is concerned, the fluid-structure interface is located at s0(t) = v0t at any
time t ∈ [0, ∆t].

The exact solution of the above one-sided, one-dimensional Riemann problem contains a
constant (in time) state at the fluid-structure interface which is denoted here by

W ∗ = (ρ∗, ρ
∗v∗, E∗)T . (22)

The corresponding pressure is denoted by p∗.

3. Recover the state vector of the three-dimensional flow at MiLiR , namely W L
M , as follows

ρ
L
M = ρ

∗

~vL
M = v∗~nEM +

(
~viL − (~viL ·~nEM)~nEM

)
pL

M = p∗

eL
M =

pL
M

(γ−1)ρL
M

EL
M = ρ

L
MeL

M +
1
2
~vL

M ·~vL
M

4. Evaluate each component of term < 1 > in (10) as follows∫
∂CiLiR

~F (Wh) ·~niLiR dΣ = ΦFiLiR
(WiL ,W

L
M,EOSL,~niLiR). (23)

The one-sided Riemann problem (17) is a left fluid-structure Riemann problem. Its exact solution
W̃ (s, t) is self-similar — that is, it verifies W̃ (s, t) = W̃ (s/t). It is given in APPENDIX A in order to
keep this paper as self-contained as possible.

If the flow occurs on both left and right sides of the considered region of ΣE as in the case
of embedded thin structures, ALGORITHM 1 is applied twice: (1) once as described above to
compute for each control volume CiL and each edge ViLViR intersecting ΣE the numerical flux
ΦFiLiR

(WiL ,W
L
M,EOSL,~niLiR) and the pressure value pL

M , and (2) a second time for each control volume

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 11

Ci
L
i
R @

ni
L
i
R

SE

Vi
L Vi

R

Mi
L
i
R

nEM

Ci
L Ci

R

s

Figure 4. Two control volumes on the left and right sides of a region of an embedded discrete interface (two-
dimensional case, quadrilateral mesh).

CiR and each edge ViRViL intersecting ΣE with the left one-dimensional fluid-structure Riemann problem
replaced by its right counterpart to compute instead ΦFiRiL

(WiR ,W
R
M,EOSR,~niRiL) and pR

M .

Remark 1. It is noted that ASSUMPTION 1 described above introduces a first-order geometric (and
therefore spatial) error in the computation of the numerical flux function across an embedded interface
and the recovery of the value of the pressure field on that surface.

3.2. Some implementational details

ALGORITHM 1 can be seamlessly adapted to any time-integration scheme. Its implementation in a
conventional FV-based CFD solver is straightforward, provided that computational tools are identified
for: (a) determining the status of a grid point as defined below, and (b) computing the intersection of
the CFD grid and the embedded discrete interfaces of interest. These two issues can be coupled and
therefore the order in which they are discussed does not matter.

Here, the status of a grid point Vi is defined as an integer that is negative when Vi is inside an obstacle, or
otherwise non negative and equal to the integer identifier of the EOS governing the medium containing
that grid point. Several fast computational technologies can be applied for determining and updating
the status of a grid point. These include, for example, the well known concept of a (local) signed
distance function, and the bounding box hierarchies and flood-fill algorithms that are often encountered
in computational graphics for accelerating the computational process. Ray casting can be used for
computing the intersection points Ik of the given CFD grid and embedded discrete interfaces (for
example, see [27] and references therein).

Once the status of the CFD grid points have been determined and the intersection points Ik have been
computed, the implementation of ALGORITHM 1 in a given FV-based CFD solver can be performed
essentially by modifying the flux computation loop as follows. For each control volume boundary facet
∂Ci j, the status of the vertices Vi and Vj are first inspected. If both vertices are found to have the same
non negative status, both vertices are in the same fluid medium: in this case, the numerical fux function
ΦFi j (11) is computed as usual, using the EOS of the fluid containing these two grid points. If both

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

12 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

vertices are found to have the same negative status, both vertices are inside the obstacle and therefore
no flux is computed across the boundary facet ∂Ci j. If Vi and Vj are found to have different status and
only one of them is negative, one of these two vertices is in a fluid medium and the other inside the
obstacle: in this case, ΦFi j is computed as in Eq. (23). On the other hand, if Vi and Vj are found to have
different status that are both non negative, these two grid points are separated by a thin structure (for
example, a shell): in this case, two flux functions ΦFi j are computed, each as in Eq. (23).

4. A NUMERICAL ALGORITHM FOR LOAD COMPUTATION BASED ON THE LOCAL
RECONSTRUCTION OF EMBEDDED INTERFACES

As noted in Section 2.3, the discretization of the second transmission condition (8) on body-fitted
CFD grids typically amounts to computing a generalized flow-induced load of the form given in (15)
and/or its resultant. However, as illustrated in Figure 3, for a non body-fitted CFD grid, Dh does
not contain in general the surface discretizations Σ◦F and Σ t

F of the wall boundaries Σ◦w and Σ t
w,

respectively. Consequently, the CFD solver based on an embedded boundary method does not have
explicit representations of the surfaces where the flow-induced load needs to be computed. On the other
hand, the FE structural model contains a discrete representation ΣS of flexible wall boundaries but the
structural solver does not have direct access to the pressure field computed by the flow solver. For these
reasons, an approach different than that outlined in Section 2.3 is required in this case for evaluating the
generalized load vector (15) and its resultant. For this purpose, a first approach is presented here. This
approach relies on the local reconstruction within the CFD solver of the embedded discrete interfaces
of interest.

Let ΣE denote an embedded discrete interface consisting of elements τq of arbitrary shape

ΣE =
Nτ⋃

q=1

τq. (24)

For a flexible wall boundary, ΣE can be in practice ΣS or another discrete representation of this
wall boundary characterized by a different (for example, finer) mesh resolution. A key observation,
particularly in the context of this work, is that the evaluation of the fluid state vector at an intersection
of the embedded discrete interface and the CFD grid is simpler than its evaluation at a vertex of
that surface. Indeed, at the intersections of ΣE and Dh, W can be — and in this work, is already —
determined from the solution of local, one-dimensional, one-sided Riemann problems as explained in
Section 3. On the other hand, the evaluation of W at the vertices of ΣE requires relatively complex
interpolations, particularly in three dimensions. This observation is behind the specific approach
described next for reconstructing an embedded discrete interface within a given CFD grid.

4.1. Algorithm for reconstructing an embedded discrete interface

After the points Ik defined by the intersections of ΣE and the edges (both in two and three dimensions)
of Dh have been computed — for example, using ray casting as already mentioned in Section 3 —
ALGORITHM 2 outlined below reconstructs the embedded discrete interface ΣE as the union Σ̃E of a

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 13

collection of triangles τ̃q obtained by connecting the points Ik — that is,

Σ̃E =
Nτ̃⋃

q=1

τ̃q. (25)

The choice of a triangle for τ̃q is based on the fact that a tetrahedron, prism, pyramid, or hexahedron
— all of which can be encountered in a CFD grid — usually intersects a surface in at least three non
colinear points, and the simplest approach for connecting more than three points is to use triangles.

ALGORITHM 2

For each element De
h in Dh:

1. Inspect the status of the vertices of De
h .

2. If all status are positive or all of them are negative, De
h does not cross ΣE .

3. Otherwise, De
h crosses ΣE and contributes one or more elements τ̃q to Σ̃E that are constructed as

follows.

(a) Initialize a list L e of intersection points.

(b) Loop on the edges of De
h : for each edge intersecting ΣE , identify the intersection point Ik

and add it to L e.

(c) Connect all points of L e to form one or more elements τ̃q.

As illustrated in Figure 5 which focuses on the two-dimensional case for the sake of clarity, the
reconstructed discrete interface Σ̃E is in general a geometrically accurate approximation of the
embedded discrete interface ΣE , provided that the CFD grid has at least the same mesh resolution
as ΣE , which is usually the case.

SE

SE

Ik

tq

tq

xk
q

nE q

SE

SE

Figure 5. Reconstruction of the embedded discrete interface (two-dimensional case, quadrilateral mesh).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

14 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

4.2. Algorithm for computing the generalized and total flow-induced load vectors

For simplicity, but without any loss of generality, assume next that the embedded discrete interface ΣE
is the discretization of the wet surface of the structure of interest, ΣS. For each computed intersection
point Ik, the id of the intersecting element of ΣE , τq, and the natural coordinates of Ik in τq, ξ

q
k (see

Figure 5), are collected. This information can be exploited to effectively interpolate at each point Ik the
displacement and velocity of the reconstructed discrete interface Σ̃E as follows

u(Ik) = ∑
j

N q
j (ξ

q
k)u j and u̇(Ik) = ∑

j
N q

j (ξ
q
k)u̇ j, (26)

where N q
j is the FE shape function associated with node V q

j of the element (or face) τq containing the
point Ik, the summation in (26) is carried over all relevant shape functions of τq, these shape functions
satisfy the partition of unity property, and u j and u̇ j are the displacement and velocity of ΣE at node
V q

j of element (or face) τq, respectively.

Let pk and vk denote the computed values of the fluid pressure and velocity vector at the interface points
Ik. In this work, these values are computed by solving local, one-dimensional, one-sided Riemann
problems as explained in Section 3. On the reconstructed discrete interface Σ̃E , the fluid pressure and
velocity fields can be approximated at each point~x ∈ τ̃q as follows

ph(~x) =
3

∑
k=1

Ñ q
k

(
η(~x)

)
pk, and ~v(~x) =

3

∑
k=1

Ñ q
k

(
η(~x)

)
vk, (27)

where Ñ q
k is the classical FE shape function associated with node Iq

k of the triangle τ̃q, and η(~x) are the
natural coordinates of the point~x in the element τ̃q containing it.

Discretizing the first transmission condition (7) on Σ̃E yields

vk~̃n
q
E = u̇(Ik)~̃n

q
E , (28)

where ~̃nq
E is the normal to an element τ̃q of Σ̃E connected to Ik.

Let NE denote the total number of vertices in ΣE . Following the methodology developed in [25] for
computing the generalized flow-induced load vector in the context of the ALE framework where
the CFD grid remains body-fitted at all time-instances, the generalized flow-induced load vector at
node Vi of the FE structural model, fF

i , is computed here by applying the virtual power principle at
the fluid/structure interface. In this case, this interface is approximated by the reconstructed discrete
interface Σ̃E . Using the δ symbol to denote a virtual quantity, Eq. (27), Eq. (28) and Eq. (26), this
principle can be written as

NE

∑
i=1

fF
i δ u̇i = −∑

τ̃q

∫
τ̃q

(
− ph(~x)

)
~̃nq

Eδ~vh(~x)dτ

= ∑
τ̃q

∫
τ̃q

[
3

∑
k=1

Ñ q
k

(
η(~x)

)
pk~̃n

q
E

3

∑
k=1

Ñ q
k

(
η(~x)

)
δvk

]
dτ

= ∑
τ̃q

∫
τ̃q

[
3

∑
k=1

Ñ q
k

(
η(~x)

)
pk~̃n

q
E

3

∑
k=1

Ñ q
k

(
η(~x)

)[
∑

j
N q

j (ξ
q
k)δ u̇ j

]]
dτ. (29)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 15

Eq. (29) above and the partition of unity property of the shape functions N q
i and Ñ q

k lead to the
following algorithm for computing the generalized flow-induced load vector at node Vi of the given
FE structural model and its resultant.

ALGORITHM 3

fF
i = ∑

τ̃q/∃Ik∈τ̃q
and

Ik∈(τq3Vi)

∫
τ̃q

3

∑
k=1

Ñ q
k

(
η(~x)

)
pk~̃n

q
E

3

∑
k=1

Ñ q
k

(
η(~x)

)
N q

i (ξ
q
k)dτ, (30)

and

fF =
NE

∑
i=1

fF
i =

NE

∑
i=1

∑
τ̃q/∃Ik∈τ̃q

and
Ik∈(τq3Vi)

∫
τ̃q

3

∑
k=1

Ñ q
k

(
η(~x)

)
pk~̃n

q
E

3

∑
k=1

Ñ q
k

(
η(~x)

)
N q

i (ξ
q
k)dτ

= ∑
τ̃q∈Σ̃E

∫
τ̃q

3

∑
k=1

Ñ q
k

(
η(~x)

)
pk~̃n

q
E

3

∑
k=1

Ñ q
k

(
η(~x)

) NE

∑
i=1

N q
i (ξ

q
k)dτ

= ∑
τ̃q∈Σ̃E

∫
τ̃q

3

∑
k=1

Ñ q
k

(
η(~x)

)
pk~̃n

q
E

3

∑
k=1

Ñ q
k

(
η(~x)

)
dτ

= ∑
τ̃q∈Σ̃E

∫
τ̃q

3

∑
k=1

Ñ q
k

(
η(~x)

)
pk~̃n

q
E dτ (as expected). (31)

Remark 2. If the embedded discrete interface ΣE does not coincide with the discretization of the wet
surface of the structure of interest, ΣS, the derivation of ALGORITHM 3 presented above is extended
as follows. First, the projection of ΣE onto ΣS is computed only once in a pre-processing step, and the
natural coordinates of each projected point of ΣE in the element of ΣS containing it are collected. Then,
each nodal displacement ui or velocity u̇i appearing in Eq. (26) is interpreted as a nodal displacement
or velocity of the embedded interface ΣE , respectively, and is computed by interpolation of the nodal
displacement and velocities of ΣS using the aforementioned projections and natural coordinates. This
leads to a generalized load vector of the form given in (30) but where the result fF

i has the physical
meaning of the flow-induced , finite element load on vertex Vi of ΣE and not ΣS. Therefore, an additional
step is performed to redistribute fF

i on the nodes of the FE structural model associated with ΣS. This
additional step is carried out using the same virtual power principle used for deriving ALGORITHM 3,
but the natural coordinates of the points of projection of ΣE onto ΣS.

4.3. Conservation and consistency properties

ALGORITHM 3 proposed above for computing the generalized flow-induced load vector is conservative
in the sense that the total work produced by the action of the fluid on the structure at the reconstructed
fluid/structure interface Σ̃E is equal and opposite to the total work produced by the reaction of the
structure on the fluid at Σ̃E .

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

16 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

Furthermore, for a constant pressure field p = p?, it follows from Eq. (30) and the partition of unity
property of the shape functions N q

i and Ñ q
k that the resultant flow-induced force vector is

NE

∑
i=1

fF
i = p?

NE

∑
i=1

∑
τ̃q/∃Ik∈τ̃q

and
Ik∈(τq3Vi)

∫
τ̃q

~̃nq
E

3

∑
k=1

Ñ q
k

(
η(~x)

)
N q

i (ξ
q
k)dτ

= p? ∑
τ̃q∈Σ̃E

∫
τ̃q

~̃nq
E

3

∑
k=1

Ñ q
k

(
η(~x)

) NE

∑
i=1

N q
i (ξ

q
k)dτ

= p? ∑
τ̃q∈Σ̃E

∫
τ̃q

~̃nq
E

3

∑
k=1

Ñ q
k

(
η(~x)

)
dτ

= p? ∑
τ̃q∈Σ̃E

∫
τ̃q

~̃nq
E dτ. (32)

Hence, for a constant pressure field p = p? and a closed embedded discrete interface ΣE ,

NE

∑
i=1

fF
i = p? ∑

τ̃q∈Σ̃E

∫
τ̃q

~̃nq
E dτ = 0 (33)

as it should be. Therefore, ALGORITHM 3 for computing the generalized flow-induced load vector is
also consistent in the sense that it preserves the vanishing property of the exact integration of a constant
pressure field over a closed surface.

4.4. Accuracy analysis

In principle, ALGORITHM 3 proposed in this paper for load computation in an embedded boundary
method is locally third-order space-accurate and globally second-order space-accurate. In other words,
it delivers a generalized flow-induced force distribution (30) that is third-order accurate in space, and
a generalized flow-induced resultant (31) that is second-order accurate in space. However, because of
ASSUMPTION 1 which introduces a first-order geometric error in both the computation of the numerical
flux function across an embedded interface and the pressure field on this interface, ALGORITHM 3
delivers a load computation scheme that is locally second-order space-accurate and globally first-order
space-accurate. Hence, improving the global accuracy of this algorithm requires developing first a
higher-order extension of ALGORITHM 1 proposed in this paper for treating a fluid-structure interface
in an embedded boundary method.

4.5. Practical implementation

In practice, Σ̃E needs be reconstructed only locally, and ALGORITHM 2 and ALGORITHM 3 can be
combined and implemented as follows for computing the generalized load vector (30).

For each element De
h in Dh:

1. Inspect the status of the vertices of De
h .

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 17

2. If all status are positive or all of them are negative, De
h does not cross ΣE .

3. Otherwise, De
h crosses ΣE and contributes one or more elements τ̃q to Σ̃E that are constructed as

follows.

(a) Initialize a list L e of intersection points.

(b) Loop on the edges of De
h : for each edge intersecting ΣE , identify the intersection point Ik

and add it to L e.

(c) Connect all points of L e to form one or more elements τ̃q.

(d) Compute the contributions of the elements τ̃q to the generalized flow-induced load vectors
fF
i (30), for all Vi ∈

(
τq 3 (Iq

k ∈ τ̃q)
)

Hence, if ΣE = ΣS, the generalized load vector (30) is computed by the flow solver and communicated
to the structural analyzer. However, if ΣE 6= ΣS, the flow solver computes the equivalent (in the sense
of the virtual work) nodal load on the embedded interface ΣE and communicates them to the structural
analyzer which redistributes them on ΣS, as explained in Remark 2 of Section 4.2.

5. A RECONSTRUCTION-FREE COMPUTATIONAL FRAMEWORK FOR LOAD
COMPUTATION

The first approach for load computation on embedded interfaces presented in Section 4 is practical even
when the embedding CFD grid is unstructured, or made of other elements besides hexahedra, thanks
to the widely available computational geometry tools, particularly from the computational graphics
community. As demonstrated in Section 6, it even delivers a good CPU performance, despite the fact
that it relies on an explicit but local reconstruction of the embedded discrete interface. Nevertheless,
a second approach for load computation on embedded discrete interfaces is presented here. This
alternative approach bypasses any reconstruction and some of the complex computational geometry
operations it entails.

5.1. Surrogate embedded interface and projection on the zero level set

As already stated in Section 2.3, the computation of a generalized flow-induced load vector or its
resultant is a relatively simple post-processing task in a CFD computation on a body-fitted grid because
at this stage of a flow analysis, the pressure field and all other entities constituting the integrands of the
integrals to be computed during this post-processing step are readily available on the spatial domain
of integration. Unfortunately, this is not the case in an embedded boundary method, because a typical
embedded discrete interface does not necessarily go everywhere through grid points or cell centers
of the computational domain. Hence, the idea here is to ease the computation of a generalized flow-
induced load vector or its resultant in an embedded boundary method by: (1) choosing a “convenient”
surrogate interface Σ̂E where all data forming the integrands of the integrals to be evaluated for load
computation are either readily available at this stage of a flow analysis or easy to obtain, and (2) convert
any integral over the real discrete interface ΣE into an equivalent integral over its surrogate Σ̂E or any

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

18 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

other representation Σ̃E of Σ̂E where load computation is even easier. These two components of the
idea developed here are discussed below, in reverse order.

Let~x = (x1,x2,x3)∈ΩF denote a point in the computational fluid domain, and let φ(~x) denote a signed
distance from~x to the embedded discrete interface ΣE . Hence, ΣE is characterized by φ = 0 for~x ∈ ΣE ,
and two regions of ΩF characterized by φ > 0 and φ < 0 are either occupied by two different fluid
media or by a fluid and a structure. The level set function φ is introduced here for two purposes:
to identify the edges ViVj that are crossed at a given time by an embedded interface, in which case
φ(Vi)×φ(Vj)< 0, and to compute the unit outward normal to ΣE at a point~x,

~nE(~x) = ∇xφ(~x), where ‖∇xφ(~x)‖2 = 1. (34)

Let Σ̂E denote a surrogate of the embedded discrete interface ΣE that is convenient in the sense defined
above and further clarified later in this Section. Let also π denote the function which maps Σ̂E onto ΣE
— that is,

π : ~x = (x1,x2,x3) ∈ Σ̂E −→~y = (y1,y2,y3) = π(~x) ∈ ΣE . (35)

In an ideal setting such as that graphically depicted in case (a) of Figure 6, π is a one-to-one mapping
that can be expressed as

π(~x) =~x−φ(~x)∇xφ(~x). (36)

Hence, π is a mapping which projects Σ̂E on the zero level set ΣE .

If Σ̂E is parameterized by ~ζ = (ζ1,ζ2), where ζ1 and ζ2 are, for example, some natural coordinates in
a reference configuration Σ̃E of a point in Σ̂E , let θ denote the function which maps Σ̃E onto Σ̂E — that
is,

θ : ~ζ = (ζ1,ζ2) ∈ Σ̃E −→ x = (x1,x2,x3) = θ(~ζ) ∈ Σ̂E . (37)

Let also

G = ∇ζ θ =

[
∂θi

∂ζ j

]
i=1,··· ,3; j=1,2

and F = ∇xπ =

[
∂πi

∂x j

]
i, j=1,··· ,3

. (38)

The computation of the matrix G is standard in any FE code. On the other hand, the level set function
can be used to compute the matrix F , assuming that φ is twice differentiable. Indeed,

∂πi

∂x j
(~x) = δi j−

∂φ

∂x j
(~x)

∂φ

∂xi
(~x)−φ(~x)

∂ 2φ

∂x j∂xi
(~x), (39)

where δi j denotes the Kronecker delta, and using Eq. (34) and the notation

H(~x) =
[

∂ 2φ

∂x jxi
(~x)
]

i, j=1,··· ,3
, (40)

F can be written as
F = ∇xπ = I−~nE(~x)⊗~nE(~x)−φ(~x)H(~x), (41)

where I is the identity matrix.

Consider now the integral over an embedded discrete interface ΣE of a vector function ~f (~y) such as
that involved in the computation of a generalized flow-induced load vector or its resultant. From the
mappings introduced above, it follows that∫

ΣE

p(~y)dΣ =
∫

Σ̂E

p
(
π(~x)

)√
det[FT F]dΣ̂, (42)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 19

∫
Σ̂E

p(~x)dΣ =
∫

Σ̃E

p
(

θ(~ζ)
)√

det[GT G]dζ1 dζ2, (43)

and therefore ∫
ΣE

p(~y)dΣ =
∫

Σ̃E

p

(
π

(
θ(~ζ)

))√
det[GT FT FG]dζ1 dζ2. (44)

The result (42) above reveals that a surrogate embedded discrete interface Σ̂E is convenient if: (a)
p
(
π(~x)

)
is either readily available on this interface or can be obtained there by simple computational

means, (b) the associated mapping π and corresponding gradient matrix F can be efficiently evaluated
on this interface, and of course, (c) ΣE is explicitly contained in the discretization Dh. Even when
such a surrogate interface is identified, it may be even simpler to perform the load computation on a
reference configuration Σ̃E for Σ̂E , in which case the result (44) is used instead of its counterpart (42).

(a)

SE

(b)

SE

(c)

SE
missed

region

SE SE SE

Figure 6. Three typical situations arising from the choice of a surrogate embedded interface Σ̂E : (a) an ideal
situation, (b) a situation where π is not a one-to-one mapping, and (c) a situation where the variation of the normal

to Σ̂E is non smooth and leads to loss of accuracy.

The following academic example illustrates the application of the result (44) derived above. In this
example, ΣE is a triangle τ and Σ̂E is chosen as the projection of ΣE onto a plane that does not contain
τ . Hence in this case, Σ̂E is also a triangle τ̂ whose vertices are denoted here by Vi, i = 1, · · · ,3, π(~x) is
a one-to-one mapping and more specifically a linear function, and therefore H(~x) = 0 and

F = F̃ = I−nE ⊗nE =⇒ det[GT FT FG] = det[GT F̃T F̃G] = det[GT F̃G], (45)

where
GT F̃G = GT (I−~nE ⊗~nE)G = GT G− (GT~nE)⊗ (GT~nE). (46)

Let~g1 =
−−→
V1V2 and~g2 =

−−→
V1V3, let τ̃ denote the reference right triangle with two edges of unit length and

a hypotenuse of length =
√

2, and let λ1(~ζ) = 1− ζ1− ζ2, λ2(~ζ) = ζ1, and λ3(~ζ) = ζ2 be the usual
linear shape functions associated with a triangle such as τ̃ . In this case,

θ(~ζ) =
3

∑
i=1

λi(~ζ)Ai,
∂θ

∂ζ j
= g j, j = 1,2, and G = (g1 g2). (47)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

20 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

If |τ̂| denotes the area of the triangle τ̂ and~nτ̂ the normal to τ̂ , then

|τ̂|= ‖g1×g2‖
2

(48)

and √
det(GT F̃T F̃G) = 2|τ̂||~nτ̂ ·~nE |. (49)

From Eq. (44), it follows that for this academic example,∫
τ

~f (~y)dΣ = 2|τ̂|
∫

τ̃

~f
(

π
(
θ(ζ)

))
|~nτ̂ ·~nE |dζ1 dζ2. (50)

In particular for ~f (y) = 1, the identity (50) above gives∫
τ

dΣ = 2|τ̂|
∫

τ̃

|~nτ̂ ·~nE |dζ1 dζ2, (51)

which can also be written as

|τ|= |τ̂||~nτ̂ ·~nE |, or equivalently, |τ̂|= |τ|
|~nτ̂ ·~nE |

, (52)

which is the well-known formula for the exact evaluation of the area of the projection of a triangle onto
a plane. Hence, the academic example presented above highlights the potential of the results (42)–(44)
for load computation on a surrogate discrete interface.

However, given a discretization Dh of the fluid domain of interest, finding a surrogate interface Σ̂E that
is convenient in the sense defined above and for which a one-to-one mapping π exists is not always
possible. For example, Figure 6, case (b), graphically depicts a situation where a convenient surrogate
embedded discrete interface does not lead to a projector π that is a one-to-one mapping. Furthermore,
the computation of the gradient matrix F (41) can require computational and implementational efforts
that are comparable to those of the reconstruction of ΣE discussed in Section 4. For these reasons,
the practical exploitation of the results (42)–(44) calls for introducing some approximations in their
computation. These are suggested by the spatial and temporal characteristics of the underlying CFD
method, among others.

In the context of this work, the FV method chosen in Section 2.2 for illustrating the ideas presented in
this paper, and the flux-based method proposed in Section 3 for enforcing the velocity condition (7) on
an embedded discrete interface and recovering there the value of the fluid pressure, suggest choosing
as a surrogate fluid/structure interface

Σ̂E =
⋃

(l,m)/φlφm<0

∂Clm, (53)

where φl = φ(~Vl), φm = φ(~Vm), and VlVm is the edge associated with (or traversing) the boundary facet
∂Clm (see Figure 7). Indeed, this interface is practical as it is made of control volume boundary facets
∂Clm that are explicitly built in a FV code operating on dual control volumes. After ALGORITHM
1 has been used for enforcing the velocity condition (7) on Σ̂E , the value of the fluid pressure pk
at the intersection of each facet Clm and its associated edge VlVm is automatically obtained using
ASSUMPTION 1. Hence, p is known in this case on both Σ̂E and ΣE . Therefore, it is chosen here
to approximate p

(
π(~x)

)
by p(~x) — that is, to approximate π(~x) by~x and therefore F by I. This gives∫

ΣE

p(~y)dΣ≈
∫

Σ̂E

p(~x)dΣ̂. (54)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 21

Vl Vm

Vi

SE

Ik

xk
 q

tq

SE

SE

SE

tq SE

Clm @

Figure 7. Surrogate embedded discrete interface Σ̂E in the context of a finite volume method with dual control
volumes (two-dimensional case, quadrilateral mesh).

5.2. Conservative and consistent algorithm for load computation

Following the same conservative approach based on virtual work adopted in ALGORITHM 3 for
computing the generalized flow-induced load vector, choosing Σ̂E given in (53) as a surrogate
fluid/structure interface, choosing also to approximate π(~x) by ~x and therefore F by I to obtain the
approximation (54), and recalling the partition of unity property of the shape functions N q

i leads to
the following conservative algorithm for computing the distribution and resultant of the generalized
flow-induced load.

ALGORITHM 4

fF
i = ∑

τq3Vi

∑
(l,m)/

(φl φm<0 & Ik∈τq)

∫
∂Clm

pk~nlm N q
i (ξ

q
k)dτ, (55)

and

fF =
NE

∑
i=1

fF
i = ∑

τq∈ΣE

∑
(l,m)/

(φl φm<0 & Ik∈τq)

∫
∂Clm

pk~nlm ∑
Vi∈τq

N q
i (ξ

q
k)dτ

= ∑
(l,m)/φlφm<0

pk

∫
∂Clm

~nlm dτ. (56)

From Eq. (56) above and the partition of unity property of the shape functions N q
i , it follows that for a

constant pressure p = p?,
NE

∑
i=1

fF
i = p? ∑

(l,m)/φlφm<0

∫
∂Clm

~nlm dτ. (57)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

22 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

From the definition (53), it follows that if ΣE is closed, then Σ̂E is also closed. Hence, for a
constant pressure and a closed embedded surface, the resultant (56) is equal to zero. This proves that
ALGORITHM 4 for computing the generalized flow-induced load vector is also consistent in the sense
of preserving the vanishing property of the exact integration of a constant pressure field over a closed
surface.

5.3. Accuracy analysis

The following observations are noteworthy:

• Except when π happens to be the identity mapping, the approximation p
(
π(~x)

)
≈ p(~x) is a first-

order spatial approximation of the pressure on the embedded interface Σ̂E (or equivalently on
Σ̃E).

• The resulting approximation (54) is locally second-order space-accurate, and therefore as
accurate, if not more accurate, than the numerical solution delivered at an embedded interface
by a typical embedded boundary method.

• Attempting to “improve” the spatial accuracy of the approximation (54) by incorporating in it a
correction factor of the form |~nτ̂ ·~nE | in order to account for the effect of the projection of Σ̂E
onto ΣE would be counterproductive. To begin, as shown in Eq. (49) pertaining to the academic
example of Section 5.1, such a correction factor can be traced to the exact expression (36) of
the mapping π and therefore is inconsistent with the approximation π(~x) ≈~x. Furthermore, as
shown in Figure 6, case (c), when Σ̂E is not sufficiently smooth as in the case of the surrogate
interface (53) illustrated in Figure 7, projecting Σ̂E onto ΣE results in missing some regions of
ΣE during the integration process. Not only this degrades spatial accuracy, but it also leads to a
load computation scheme that does not preserve the vanishing property of the exact integration
of a constant pressure field over a closed surface (see Section 5.2).

It follows that in general, ALGORITHM 4 proposed in this paper for load computation in an embedded
boundary method is locally second-order space-accurate, and globally first-order space-accurate. In
other words, it delivers a generalized flow-induced force distribution (55) that is second-order accurate
in space, and a generalized flow-induced resultant (56) that is first-order accurate in space. In the
particular case where π is the identity mapping — that is, when the proposed surrogate interface
is identical to the real interface — ALGORITHM 4 becomes locally third-order space-accurate and
globally second-order space-accurate.

6. APPLICATIONS AND PERFORMANCE ASSESSMENTS

The numerical algorithms presented in this paper for interface treatment and load computation in
embedded boundary methods were implemented in the flow solver AERO-F [9, 28] which also
incorporates an ALE computational framework. In this Section, they are illustrated by their application
to two dynamic fluid-structure interaction problems in the fields of aeronautics and underwater
implosion. The first problem is characterized by a structure whose thinness challenges the robustness
of ray-based intersection algorithms. The second problem is characterized by shock waves and large
structural deformations. For both problems, reference AERO-F ALE solutions are also computed for

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 23

the purpose of verification. This requires however modifying slightly the second problem so that it
can be solved by an ALE-based CFD method. The computed reference solutions are reliable as the
ALE computational framework of AERO-F has been successfully verified and validated for many
applications in aeronautics [9, 28] and underwater implosion [26, 5].

AERO-F’s embedded boundary method is based on the same second-order spatial discretization of
AERO-F’s ALE method. In the case of AERO-F’s embedded boundary method, the semi-discrete
equations governing the coupled fluid-structure interaction problem are time-integrated using a variant
of the second-order time-accurate explicit-explicit staggered solution procedure developed in [5].
However in the case of AERO-F’s ALE method, the governing semi-discrete equations are time-
integrated using the second-order implicit (fluid) - explicit (structure) coupling scheme also developed
in [5]. In addition, the numerical algorithms proposed in this paper are applied to the solution of a
two-dimensional manufactured problem in order to verify the associated theoretical results presented
in this paper.

Whereas most embedded boundary methods are designed to operate on structured parallelepiped
meshes or right rectangular prismatic grids, the majority of the computations reported here are
performed on unstructured tetrahedral meshes. This is essentially for two reasons: (1) AERO-F is an
unstructured grid flow solver, and (2) this demonstrates the versatility of the proposed algorithms.

It is also noted that all computations reported in this Section are performed in double-precision
arithmetic on a massively parallel Linux Cluster system.

6.1. Verification of the accuracy analysis for idealized and realistic mesh configurations

In Section 4.4, it was concluded that in the ideal situation where ASSUMPTION 1 is satisfied,
ALGORITHM 3 for load computation equipped with ALGORITHM 2 for surface reconstruction is
locally third-order space-accurate and globally second-order space-accurate; in the realistic situation
where ASSUMPTION 1 is not satisfied, ALGORITHM 3 is locally second-order space-accurate
and globally first-order space-accurate. On the other hand, it was concluded in Section 5.3 that
ALGORITHM 4 is in principle second-order space-accurate locally and first-order space-accurate
globally; however, it becomes locally third-order space-accurate and globally second-order space-
accurate when the surrogate interface (53) becomes identical to real interface. In this section, these
theoretical accuracy results are numerically verified for the two-dimensional manufactured problem
described below.

Let Ω= [−2,2]× [−2,2] denote a square domain where the pressure field is assumed to vary as follows

p(x,y) = sin(x+ y), (58)

where x and y are measured in an orthonormal frame whose origin is at the center of Ω. Assume that
a square ribbon — playing here the role of a closed interface — with a side-length l = 2 is embedded
in Ω so that the center of the area it covers coincides with the center of Ω. The total pressure-induced
force on this interface is given by the integral of p(x,y) on the perimeter of this interface and therefore
is equal to

fF =

(
2(1− cos2)
2(1− cos2)

)
. (59)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

24 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

To verify the global convergence properties of ALGORITHM 3 (equipped with ALGORITHM 2)
and ALGORITHM 4 applied to the approximation of the above total force, two different sets of
discretizations of Ω are constructed. The first set, S1, consists of a series of increasingly refined
uniform quadrilateral meshes constructed so that ASSUMPTION 1 is always satisfied and the surrogate
interface (53) is identical to the real interface (the ideal case) — that is, the perimeter of the embedded
interface always coincides everywhere with control volume facets of the dual mesh. For example,
Figure 8 shows the coarsest mesh in the set S1, together with the reconstructed interface according to
ALGORITHM 2, and the surrogate interface according to (53). The second set of meshes, S2, is a set of
arbitrary triangular meshes for which ASSUMPTION 1 is not satisfied and the surrogate interface (53)
is different from the real one (the realistic case). The coarsest of these meshes is shown in Figure 9
together with the reconstructed and surrogate surfaces according to ALGORITHM 2 and definition (53),
respectively.

!2 !1 0 1 2
!2

!1

0

1

2

!2 !1 0 1 2
!2

!1

0

1

2

Figure 8. Ideal case: coarsest mesh in set S1 (uniform, quadrilateral, satisfying ASSUMPTION 1) and reconstructed
(left) and surrogate (right) interfaces.

Figure 10 and Figure 11 report in log-log format the variations with the element mesh size of the
absolute value of the relative error between the approximate and exact evaluations of the total force fF

for the ideal and realistic cases, respectively.

For the ideal case, the results shown in Figure 10 reveal that:

• ALGORITHM 3 (equipped with ALGORITHM 2 for interface reconstruction) and ALGORITHM 4
deliver the expected second-order accuracy.

• ALGORITHM 4 delivers a significantly better accuracy than ALGORITHM 3. This is because in
this ideal case, the proposed surrogate interface (53) coincides everywhere with the real interface
(see Figure 8).

For the realistic case, the variations of the relative error shown in Figure 11 are irregular because of the
irregular nature of the considered set of increasingly refined meshes S2. Nevertheless, they reveal that:

• ALGORITHM 3 (equipped with ALGORITHM 2 for interface reconstruction) delivers on average

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 25

!2 !1 0 1 2
!2

!1

0

1

2

!2 !1 0 1 2
!2

!1

0

1

2

Figure 9. Realistic case: coarsest mesh in set S2 (arbitrary, triangular, not satisfying ASSUMPTION 1) and
reconstructed (left) and surrogate (right) interfaces.

a convergence rate equal to 1.98, which is significantly higher than the theoretically determined
rate of 1.

• ALGORITHM 4 delivers on average 1.33, which is slightly higher than the theoretically
determined rate of 1.

• ALGORITHM 3 delivers a significantly better accuracy than ALGORITHM 4. This is because
in the realistic case, the reconstruction of the interface performed by ALGORITHM 2 can be
expected to be in general a more accurate representation of this interface than the surrogate (53)
(see Figure 9). However, it should be emphasized that even in this case, both ALGORITHM 3 and
ALGORITHM 4 deliver an excellent accuracy given a reasonable mesh resolution.

In summary, all numerical results obtained for the academic problem described above verify the
theoretical results presented in this paper, except in one case where a higher-order of accuracy is
obtained numerically.

6.2. Verification for a transient subsonic flow past a heaving rigid wing

Here, the problem of computing the unsteady airflow past a rigid wing in heaving motion is considered.
The wing has a root chordlength Lc = 22.0 in, a semi-span Ls = 30.0 in, a tip chordlength Lt = 14.5 in,
and a quarter-chord sweep angle of 45deg. Its panel aspect ratio is equal to 1.65 and its taper ratio is
equal to 0.66. Its airfoil section is the NACA 65A004.

The wing is set in a harmonic heaving motion characterized by the amplitude ha = 0.05 in and the
frequency h f = 500 Hz. The free-stream conditions (Mach number, angle of attack, density, and
pressure) are set to M∞ = 0.3, α∞ = 0deg, ρ∞ = 9.357255× 10−8 (lb/in4).s2, and p∞ = 14.5 psi,
respectively.

In the coordinate system whose origin is at the leading edge of the root section of the wing, and x
and y directions are along its chord and span, respectively, the chosen computational fluid domain can

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

26 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

10
!3

10
!2

10
!1

10
0

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

Element size

R
e

la
ti
v
e

 e
rr

o
r

ALGORITHM 4

ALGORITHMs 2 & 3

slope = 2 (reference)

Figure 10. Ideal case: performance of ALGORITHM 3 and ALGORITHM 4 for load computation.

10
!2

10
!1

10
0

10
1

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

Element size

R
e
la

ti
v
e
 e

rr
o
r

ALGORITHM 4

ALGORITHMs 2 & 3

slope = 1 (reference)

slope = 2 (reference)

Figure 11. Realistic case: performance of ALGORITHM 3 and ALGORITHM 4 for load computation.

be described as the rectangular box extending from x = −500.0 in to x = 500.0 in, z = −500.0 in to
z = 500.0 in, and y = 0.0 in to y = 500 in.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 27

Two CFD grids are generated: (1) a body-fitted grid G1 with 546,712 tetrahedra and 101,623 grid
points for the computation of an ALE reference solution for this problem (Figure 12), and (2) a non
body-fitted grid G2 with 609,576 tetrahedra and 105,030 grid points for computing an Eulerian solution
for this problem using an embedded boundary method for CFD (Figure 13). Two surface meshes of
the wing are also generated for the purpose of being embedded in grid G2. The first one (E1) contains
20,721 grid points and 41,438 triangles (Figure 14). The second one (E2) is much coarser. It contains
only 48 grid points and 86 triangles (Figure 15).

Figure 12. G1: a body-fitted fluid grid for the ALE simulation of the unsteady flow past a rigid wing in harmonic
heaving motion (cutview at z = 0).

Symmetry boundary conditions are applied in the plane y = 0 containing the root of the wing. Non-
reflecting boundary conditions are applied at the remaining boundaries of the external computational
fluid domain.

Five numerical simulations are performed:

1. Using the CFD grid G2, the embedded discrete surface E1, and AERO-F’s embedded boundary
method equipped with ALGORITHM 2 for interface reconstruction and ALGORITHM 3 for load
computation.

2. Using the CFD grid G2, the embedded discrete surface E1, and AERO-F’s embedded boundary
method equipped with ALGORITHM 4 for load computation.

3. Using the CFD grid G2, the embedded discrete surface E2, and AERO-F’s embedded boundary
method equipped with ALGORITHM 2 for interface reconstruction and ALGORITHM 3 for load
computation.

4. Using the CFD grid G2, the embedded discrete surface E2, and AERO-F’s embedded boundary
method equipped with ALGORITHM 4 for load computation.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

28 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

Figure 13. G2: a non body-fitted fluid grid for the Eulerian simulation using an embedded boundary method of the
unsteady flow past a rigid wing in harmonic heaving motion (cutview at z = 0).

Figure 14. E1: Embedded discrete surface of the wing with 20,721 grid points and 41,438 triangles.

5. Using the CFD grid G1 and AERO-F’s ALE computational framework.

All five simulations are initialized with a uniform flow corresponding to the free-stream conditions
specified above.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 29

Figure 15. E2: Embedded discrete surface of the wing with 48 grid points and 86 triangles.

It is noted here that the ALE computational framework is ideal for solving the rather simple, but
frequently encountered, unsteady CFD problem considered here. Indeed, because the wing is rigid,
updating in time the motion of grid G1 is trivial and computationally inexpensive. In comparison, an
embedded boundary method is computationally inefficient for this class of problems because of the
repeated grid intersections it entails. This disadventage is particularly accentuated when the mesh of
the embedded surface is fine. On the other hand, the problem considered here is an excellent verification
problem as the thinness of the wing can challenge the robustness of a computational “intersector” —
more specifically, its aptitude for finding two intersection points, one on the upper surface of the wing
and one on its lower surface, for the typical cast ray. Hence, the main purpose of this application
problem is to verify the numerical algorithms for interface treatment and load computation proposed
in this paper.

The obtained time-histories of the lift are reported in Figure 16 (simulations 1, 2, and 5) and Figure 17
(simulations 3, 4, and 5) for the first five periods of oscillation (0 s ≤ t ≤ 0.01 s). The reader can
observe that all five simulations predict almost the same lift time-histories. Hence, at least for this
problem, ALGORITHM 3 and ALGORITHM 4 for load computation deliver, as expected, the same
accuracy.

Table I reports the CPU timings on 32 cores associated with all five simulations outlined above. The
following observations and comments are noteworthy:

(1) There are two reasons why the CPU time elapsed in flux computations is higher (by about
18%) for the embedded boundary method than for the ALE method: (a) grid G2 has a few
more elements and grid points than G1 does, and these are located inside the wing, and (b) this
CPU time includes that associated with the solutions of the fluid-structure Riemann problems
performed by ALGORITHM 1 during the treatment of the interface conditions.

(2) As anticipated, for this problem, the ALE mesh motion update is virtually cost-free for the reason
explained earlier in this Section.

(3) For simulations 1–4 performed using the embedded boundary method, the CPU time consumed
by the computation of grid intersections is shown to be significantly affected by the mesh
resolution of the embedded discrete surface. This is because the complexity of the intersection

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

30 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

0 0.002 0.004 0.006 0.008 0.01
!300

!200

!100

0

100

200

300

400

Time (sec)

L
if
t
(l
b
f)

ALE

Embedded w/ ALGORITHMs 2 & 3

Embedded w/ ALGORITHM 4

0 0.0005 0.001 0.0015 0.002
!300

!200

!100

0

100

200

300

400

Time (sec)

L
if
t

(l
b

f)

ALE

Embedded w/ ALGORITHMs 2 & 3

Embedded w/ ALGORITHM 4

Figure 16. Time-history of the lift generated by the heaving rigid wing as predicted by simulations 1, 2, and 5.

Figure 17. Time-history of the lift generated by the heaving rigid wing as predicted by simulations 3, 4, and 5.

algorithm grows as O(N logn), where N and n denote the number of edges in grid G2 and number
of triangles of the embedded surface mesh that are candidate for intersection, respectively.
Given that the computational complexity of an explicit flow solver typically varies as O(N),
the computational overhead induced by intersections is bound to represent a serious percentage
of the total CPU time.

(4) The combination of ALGORITHM 2 and ALGORITHM 3 for load computation is only slightly
more computationally expensive than the alternative ALGORITHM 4, despite the fact that
ALGORITHM 2 reconstructs the embedded surface.

(5) For this problem, Figure 17 shows that using the coarse embedded discrete surface E2 delivers
essentially the same accuracy as its finer counterpart E1, and Table I shows that this reduces the
total CPU time by a factor greater than four. In particular, when using E2, the CPU overhead
associated with computing intersections is only about 15% of the total CPU.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 31

Table I. CPU performance on 32 cores of the simulation of the unsteady flow past a heaving rigid wing during one
period of oscillations.

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5
Flow computations 1,558 s 1,558 s 1,558 s 1,556 s 1,779 s

Finite volume fluxes 1,064 s 1,063 s 1,075 s 1,073 s 870 s
Mesh metrics update 0 s 0 s 0 s 0 s 472 s
Others 494 s 495 s 483 s 483 s 437 s

Mesh motion update 0 s 0 s 0 s 0 s 7 s
Intersection computations 5,940 s 5,917 s 320 s 318 s 0 s
Load computations 468 s 216 s 372 s 129 s 0 s
Total simulation time 9,258 s 8,987 s 2,343 s 2,101 s 1,895 s

6.3. Verification for the dynamic collapse of a cylindrical shell submerged in water

Finally, an underwater implosion problem is considered here as a verification test case for fluid-
structure interaction problems characterized by shock waves and large structural deformations. In this
problem which has been the subject of an experiment at the University of Texas at Austin, a short
aluminum cylinder of length L = 3 in, circular cross-section with external diameter D = 1.4995 in,
and thickness hS = 0.0277 in is submerged in a rigid water tank. It is closed at both ends with two
rigid caps and filled with air at the atmospheric pressure pi = 14.5 psi (see Figure 18). The cylinder is
maintained at the center of the tank by a set of rigid bars attached to the rigid tank. It is surrounded by
pressure sensors that are positioned at approximately the same radial distance d = 2.5 in to the center
of the cylinder.

Figure 18. Submerged cylindrical implodable with end caps designated by stripes (courtesy of Stelios Kyriakides).

Initially, the water is at rest (vo = 0 in/s). Its pressure is po = 14.5 psi and its density is ρ0
o =

9.357255× 10−5 (lb/in4).s2. At t = 0, po is increased to p0
o = 729.5 psi, at which point the cylinder

collapses and cracks open at its end caps, but not along its main body (see Figure 19).

To simulate the above experiment numerically, only half of the cylinder (lengthwise) is modeled.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

32 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

Figure 19. Collapsed cylinder with cracks at end caps (courtesy of Stelios Kyriakides).

Its aluminum material is represented as a nonlinear elasto-plastic medium with a Young modulus
E = 1.008× 107 psi, a Poisson ratio ν = 0.3, a density ρS = 2.599× 10−4 (lb/in4).s2, a yield stress
equal to 4.008× 104 psi, and a hardening modulus equal to 9.2× 104 psi. The cylinder itself is
discretized by a finite element model with 756 four-noded shell elements.

Because of the ultrahigh compressions involved in this problem, water is modeled as a stiffened gas
whose equation of state can be written as

(γ−1)ρe = p+ γπ,

where e denotes the internal energy per unit mass, and γ and π are two constants that are set here to
γ = 4.4 and π = 8.7×104 psi.

The external computational fluid domain is chosen as the rectangular box extending from 0 in to
16.44 in in the x direction originating at the center of one end cap and coinciding with the axis of the
cylinder, and from −20 in to 20 in in both the y and z directions. The (half) cylinder model is placed at
the center of this computational domain, in the y-z plane. It extends from x = 0 in to x = 2.5 in.

In principle, the internal computational fluid domain delimited by the wall boundary of the cylinder
and the symmetry plane should be discretized even for the ALE computation in order to capture the
pressure variations during the collapse of the structure. However the large deformations of the structure
would severely squeeze an interior ALE fluid mesh to the point where no mesh motion solver is able to
handle it, particularly near collapse time. This issue emphasizes why an embedded boundary method is
in general more suitable than an ALE one for the solution of a fluid-structure problem characterized by
large deformations, contact, topology changes, and other geometrical complications. Hence, in order
to be able to generate an ALE reference solution for this problem, the pressure inside the internal
computational domain is fixed here at 14.5 psi. Without this assumption or some similar simplification,
an ALE method would typically fail to complete the simulation of the experiment considered herein,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 33

whereas an embedded boundary method equipped with the interface treatment and load computation
algorithms proposed in this paper would successfully complete it.

Two CFD grids are generated: (1) a body-fitted grid G3 with 12,027,679 tetrahedra and 2,034,067 grid
points suitable for computing an ALE solution for this problem (Figure 20), and (2) a simpler, non
body-fitted grid G4 with 19,642,615 tetrahedra and 3,294,197 grid points suitable for computing an
Eulerian solution for this problem using an embedded boundary method (Figure 21). A surface mesh
of the cylindrical implodable with 1,596 triangles and 841 grid points is also generated and embedded
in grid G4.

Figure 20. G3: a body-fitted fluid grid for the ALE solution of an underwater implosion problem (cutview at z= 0).

Symmetry boundary conditions are applied to both the fluid and structural models at the transversal
plane passing through the middle cross section of the cylinder. Zero displacement and velocity
boundary conditions are applied at its end caps. Non-reflecting boundary conditions are applied at
the remaining boundaries of the external computational fluid domain. To trigger the collapse of
the cylindrical implodable, a geometric imperfection is introduced in its structural model. More
specifically, the circular cross-section of the cylinder is replaced by an ellipse described by

r = r0
(
1−0.02cos4θ

)
,

where (r,θ) are the polar coordinates of a point on the ellipse and r0 is the radius of the true circular
cross-section.

Two numerical simulations are performed: one using AERO-F’s embedded boundary method equipped
with ALGORITHM 2 for interface reconstruction and ALGORITHM 3 for load computation, and one
using AERO-F’s ALE computational framework. The initial state of the surrounding water is uniformly

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

34 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

Figure 21. G4: a non body-fitted fluid grid for the Eulerian solution by an embedded boundary method of an
underwater implosion problem (cutview at z = 0).

set to v0
o = 0 in/s, ρ0

o = 9.357255×10−5 (lb/in4).s2, and p0
o = 700.0 psi. Then, p0

o is statically increased
from its atmospheric value to the collapse value of 729.5 psi. Time-integration of the coupled fluid-
structure system is started only when the collapse pressure is reached — that is, at t = 4.25×10−5 s.
It is carried out until T = 1.0 ×10−3 s.

Figure 22 shows the shapes at T = 1.0 × 10−3 s of the collapsed cylinder predicted by AERO-F’s
embedded boundary and ALE methods. The reader can observe that both shapes are nearly identical.
They are also similar to the experimental collapsed shape shown in Figure 19. Figure 23 reports the
pressure signals predicted by both aforementioned CFD methods at the sensor located on the symmetry
plane of the computational domain, 2.5 in away from the central axis along the longitudinal direction
of the cylinder. Again, the reader can observe that AERO-F’s embedded boundary and ALE methods
predict essentially the same results. The pressure drops after approximately 2.6× 10−4 s by roughly
127 psi, then rises by about 180 psi, before the cylinder collapses and gets into self-contact around
t = 5.3× 10−4 s. At this point, a very sharp pressure rise to 997.7 psi can be observed. This second
rise is followed by a broader and higher pressure peak of 1,064 psi, before the pressure drops in an
oscillatory manner and begins to fluctuate around the initial hydrostatic pressure.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 35

Figure 22. Deformed shapes at T = 1.0 ×10−3 s predicted by AERO-F’s (1) embedded boundary method equipped
with ALGORITHM 2 for interface reconstruction and ALGORITHM 3 for load computation (left), and (2) ALE

method (right).

Figure 23. Pressure signals at a sensor location predicted by AERO-F’s (1) embedded boundary method equipped
with ALGORITHM 2 for interface reconstruction and ALGORITHM 3 for load computation, and (2) ALE method.

7. CONCLUSIONS

Focusing on the context of compressible flows and embedded boundary methods for Computational
Fluid Dynamics (CFD), this paper contributes numerical algorithms for treating fluid-wall and

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

36 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

fluid/structure interfaces and computing flow-induced loads on such interfaces. More specifically,
it proposes an approach for treating simultaneously the fluid pressure and velocity conditions on
static and dynamic embedded interfaces that is based on the exact solution of local, one-dimensional,
fluid-structure Riemann problems. It also presents two consistent and conservative approaches for
computing the flow-induced forces and moments on rigid and flexible embedded structures. The first
one reconstructs locally the fluid/structure interfaces. The second one bypasses this reconstruction and
chooses instead to work with surrogate fluid/structure interfaces. All of these numerical algorithms
are equally applicable to structured and unstructured embedding meshes. The results obtained for their
application to the solution of realistic three-dimensional fluid-structure interaction problems associated
with the fields of aeronautics and underwater implosion demonstrate their accuracy, robustness, and
potential for solving complex fluid-structure interaction problems characterized by shock waves, large
structural deformations, and topology changes.

ACKNOWLEDGEMENTS

The authors acknowledge partial support by the Office of Naval Research under Grant N00014-06-
1-0505 and Grant N00014-09-C-015, and partial support by the Army Research Laboratory through
the Army High Performance Computing Research Center (AHPCRC) under Cooperative Agreement
W911NF-07-2-0027. The content of this publication does not necessarily reflect the position of
policy of neither the Office of Naval Research nor the U.S. Army and Government, and no official
endorsement should be inferred.

APPENDIX A: EXACT SOLUTION OF THE ONE-SIDED, ONE-DIMENSIONAL,
FLUID-STRUCTURE RIEMANN PROBLEM

Using the same notation as in Section 3, except for dropping the superscripts L, R and ∼ to simplify
notation, the one-sided, one-dimensional, fluid-structure Riemann problem (17) is re-written here as

∂W
∂ t

+
∂ ~F

∂ s
(W) = 0

W (s,0) = Wi, if s≥ 0
v(v0t, t) = v0, ∀ 0≤ t ≤ ∆t,

(60)

where W denotes the state of the fluid located on one side of the given obstacle
(
the left side in

Figure (4)
)
, Wi denotes the initial state of that fluid and is assumed to be uniform, s is the abscissa

defined in Section 3 and graphically depicted in Figure 4, v(0, t) is the instantaneous velocity of the
fluid at s = 0, and

v0 = u̇M ·~nEM (61)

is assumed to be constant in the time-interval [0,∆t].

The solution of the above Riemann problem is given by two constant states separated by a nonlinear
wave that can be either a shock wave or a rarefaction fan. One constant state, WM , is at the fluid/structure
interface and is characterized by a fluid velocity equal to v0. The other constant state is on the other side

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

INTERFACE TREATMENT AND LOAD COMPUTATION IN EMBEDDED METHODS 37

of the nonlinear wave and is equal to the initial uniform state Wi. These two constant states are related
by the Rankine-Hugoniot jump conditions when the nonlinear wave that separates them is a shock
wave, and by the isentropic laws for rarefaction when the nonlinear wave is a rarefaction. Hence, the
above problem can be reduced to an explicit expression of the velocity at the fluid/structure interface,
vM , as a function of the pressure at this material interface, pM , of the form

vM = vi +R(pM; pi,ρi), (62)

where R is a vector function that depends on the structure of the wave solution, and the semi-column
”;” separates the unknown variable from the known quantities.

When the nonlinear wave is a shock wave, R is given by

R(pM; pi,ρi) =

(√
ai

pM +bi

)
(pM− pi), (63)

where

ai =
2

(γ +1)ρi
and bi =

(
γ−1
γ +1

)
pi. (64)

From the non-penetration condition — that is, the continuity of the normal component of the velocity
field at the fluid/structure interface — and the Rankine-Hugoniot conditions, it follows that

vM = v0 = u̇M ·~nEM

pM = pi +
(γ +1)ρi(v0− vi)

2

4

(
1+

√
1+
(

16
(γ +1)2

)(
γ pi

ρi

)(
1

(v0− vi)2

))

ρM = ρi

 pM

pi +
(

γ−1
γ+1

)
 1

1+
(

γ−1
γ+1

)(
pM
pi

)
 ,

which completes in this case the exact solution of problem (60).

On the other hand in the presence of a rarefaction fan, R is given by

R(pM; pi,ρi) =

(
2ci

γ−1

)(pM

pi

) γ−1
2γ

−1

 , (65)

where c denotes the speed of sound. Finally, from the non-penetration condition and the isentropic
relations, if follows that

vM = v0

pM = pi

(
1+
(

γ−1
2

)(
v0− vi

ci

)) 2γ

γ−1

ρM = ρi

(
pM

pi

) 1
γ

,

which completes the exact solution of problem (60).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

38 K. WANG, A. RALLU, J-F. GERBEAU AND C. FARHAT

REFERENCES

1. Peskin CS. Flow patterns around heart valves: a numerical method. Journal of Computational Physics 1972; 10:252-271.
2. Kreiss HO, Petersson A. A second-order accurate embedded boundary method for the wave equation with Dirichlet data.

SIAM Journal of Scientific Computation 2006; 27:1141–1167.
3. Glowinski R, Pan TW, Kearsley AJ, Periaux J. Numerical simulation and optimal shape for viscous flow by a fictitious

domain method. International Journal for Numerical Methods in Fluids 2005; 20:695–711.
4. Johansen H, Colella P. A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. Journal

of Computational Physics 1998; 147:60–85.
5. Farhat C, Rallu A, Wang K, Belytschko T. Robust and provably second-order explicit-explicit and implicit-explicit staggered

time-integrators for highly nonlinear fluid-structure interaction problems. International Journal for Numerical Methods in
Engineering, (in press)

6. Farhat C, Maute K, Argrow B, Nikbay M. A shape optimization methodology for reducing the sonic boom initial pressure
rise. AIAA Journal of Aircraft 2007; 45:1007–1018.

7. Farhat C, Geuzaine P, Grandmont C. The discrete geometric conservation law and the nonlinear stability of ALE schemes
for the solution of flow problems on moving grids. Journal of Computational Physics 2001; 174: 669–694.

8. Farhat C, Lesoinne M, Maman N. Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field
formulation, geometric conservation and distributed solution. International Journal for Numerical Methods in Fluids 1995;
21:807–835.

9. Farhat C, Geuzaine P, Brown G. Application of a three-field nonlinear fluidstructure formulation to the prediction of the
aeroelastic parameters of an F-16 fighter. Computers & Fluids 2003; 32:3–29.

10. Mittal R, Iaccarino G. Immersed bounday methods. Annual Review of Fluid Mechanics 2005; 37:239–261.
11. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J. Combined-immersed boundary finite difference methods for three-

dimensional complex flow simulations. Journal of Computational Physics 2000; 161:35–60.
12. Kim J, Kim D, Choi H. An immersed-boundary finite volume method for simulations of flow in complex geometries.

Journal of Computational Physics 2001; 171:132–150.
13. Glimanov A, Sotiropoulos F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically

complex, moving bodies. Journal of Computational Physics 2005; 207:457–492.
14. Choi JI, Oberoi RC, Edwards JR, Rosati JA. An immersed boundary method for complex incompressible flows. Journal of

Computational Physics 2007; 224:757–784.
15. Tseng YH, Ferziger JH. A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational

Physics 2003; 192:593–623.
16. Berthelsen PA, Faltinsen OM. A local directional ghost cell approach for incompressible viscous flow problems with

irregular boundaries. Journal of Computational Physics 2008; 227:4354–4397.
17. Lohner R, JBaum JD, Mestreau EL, Sharov D, Charman C, Pelessone D. Adaptive embedded unstructured grid methods.

AIAA-03-1116, 2003.
18. Mark A, van Wachem BGM. Derivation and validation of a novel implicit second-order accurate immersed boundary

method. Journal of Computational Physics 2008; 227:6660–6680.
19. Fedkiw R. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. Journal of

Computational Physics 2002; 175:200–224.
20. Roe PL. Approximate Riemann solvers, parameters vectors and difference schemes. Journal of Computational Physics

1981; 43:357–371.
21. Steger J, Warming RF. Flux vector splitting for the inviscid gas dynamic with applications to finite-difference methods.

Journal of Computational Physics 1981; 40:263–293.
22. Van Leer B. Towards the ultimate conservative difference scheme V: a second-order sequel to Goudonov’s method. Journal

of Computational Physics 1979; 32:361–370.
23. Harder RL, Desmarais RN. Interpolation using surface splines. Journal of Aircraft 1972; 9:189–191.
24. Cebral JR, Lohner R. Conservative load projection and tracking for fluid-structure problems. AIAA Journal 1997; 35:687–

692.
25. Farhat C, Lesoinne M, LeTallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-

matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity.
Computer Methods in Applied Mechanics 1998; 157:95–114.

26. Farhat C, Rallu A, Shankaran S. A higher-order generalized ghost fluid method for the poor for the three-dimensional
two-phase flow computation of underwater implosions. Journal of Computational Physics 2008; 227:7674–7700.

27. Guendelman E, Selle A, Losasso F, Fedkiw R. Coupling water and smoke to thin deformable and rigid shells. SIGGRAPH
2005; ACM TOG 24:973-981.

28. Geuzaine P, Brown G, Harris C, Farhat C. Aeroelastic dynamic analysis of a full F-16 configuration for various flight
conditions. AIAA Journal 2003; 41:363–371.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls

